Molecular determinants of mexiletine structure for potent and use-dependent block of skeletal muscle sodium channels.

نویسندگان

  • A De Luca
  • F Natuzzi
  • J F Desaphy
  • G Loni
  • G Lentini
  • C Franchini
  • V Tortorella
  • D C Camerino
چکیده

On the basis of the information about drug receptor on voltage-gated sodium channels, mexiletine (Mex) analogs with substitutions at either the asymmetric carbon atom or the aromatic ring were synthesized as pure enantiomers. The compounds were tested in vitro for their ability to produce voltage- and use-dependent block of sodium currents (I(Na)) of frog muscle fibers by the vaseline-gap voltage-clamp method. In all experimental conditions, the drug potency was highly correlated with the lipophilicity of the group on the asymmetric center, the derivative with a benzyl moiety (Me6) having IC(50) values more than 10 times lower than those of Mex, followed by the phenyl (Me4) and the isopropyl (Me5) derivative. All of the compounds showed a further reduction of IC(50) values at depolarized membrane potentials and at high frequency of stimulation (10 Hz). Mex and Me5, but not Me4, produced a stereoselective tonic block of I(Na), the R-(-) isomers being 2-fold more potent than the S-(+) ones. The removal of both methyl groups from the aromatic ring of Mex (Me3) caused a 7-fold reduction of the potency, whereas similar substitutions on the phenyl derivative Me4 (Me7 and Me8) produced opposite effects. In fact, the IC(50) of R-(-) Me7 for use-dependent block of I(Na) was 30 times lower than that of R-(-) Mex. Me8 and Me7 were stereoselective during both tonic and use-dependent blockade. All of the compounds left-shifted the steady-state inactivation curves in relation to their potency and to the duration of the inactivating prepulse. Finally, the presence of apolar groups on the asymmetric center of mexiletine is pivotal to reinforce hydrophobic interactions with the proposed aromatic residues at the receptor, and lead to potent and therapeutically interesting inactivated channel blockers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calixmexitil: Calixarene-based Cluster of Mexiletine with Amplified Anti-myotonic Activity as A Novel Use-dependent Sodium Channel Blocker

Mexiletine as the first choice drug in myotonia treatment is a chiral sodium channel blocker clinically used in its racemic form. The phenolic structure of this drug, prompted us to design its novel calix[4]arene-based cluster in a chalice-shaped structure. Therefore, the present study reports the synthesis and in-vitro anti-myotonic activity of the chalice-shaped cluster of mexiletine...

متن کامل

Calixmexitil: Calixarene-based Cluster of Mexiletine with Amplified Anti-myotonic Activity as A Novel Use-dependent Sodium Channel Blocker

Mexiletine as the first choice drug in myotonia treatment is a chiral sodium channel blocker clinically used in its racemic form. The phenolic structure of this drug, prompted us to design its novel calix[4]arene-based cluster in a chalice-shaped structure. Therefore, the present study reports the synthesis and in-vitro anti-myotonic activity of the chalice-shaped cluster of mexiletine...

متن کامل

Synthesis and in vitro sodium channel blocking activity evaluation of novel homochiral mexiletine analogs.

New chiral mexiletine analogs were synthesized in their optically active forms and evaluated in vitro as use-dependent blockers of skeletal muscle sodium channels. Tests carried out on sodium currents of single muscle fibers of Rana esculenta demonstrated that all of them exerted a higher use-dependent block than mexiletine. The most potent analog, (S)-3-(2,6-dimethylphenoxy)-1-phenylpropan-1-a...

متن کامل

Increased sodium channel use-dependent inhibition by a new potent analogue of tocainide greatly enhances in vivo antimyotonic activity

Although the sodium channel blocker, mexiletine, is the first choice drug in myotonia, some myotonic patients remain unsatisfied due to contraindications, lack of tolerability, or incomplete response. More therapeutic options are thus needed for myotonic patients, which require clinical trials based on solid preclinical data. In previous structure-activity relationship studies, we identified tw...

متن کامل

Gating of myotonic Na channel mutants defines the response to mexiletine and a potent derivative.

BACKGROUND Myotonia and periodic paralysis caused by sodium channel mutations show variable responses to the anti-myotonic drug mexiletine. OBJECTIVE To investigate whether variability among sodium channel mutants results from differences in drug binding affinity or in channel gating. METHODS Whole-cell sodium currents (I(Na)) were recorded in tsA201 cells expressing human wild-type (WT) an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular pharmacology

دوره 57 2  شماره 

صفحات  -

تاریخ انتشار 2000